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Plan for today

« Safe RL methods
o Safety Gym environment
* Trust-region search: TRPO, PPO
 Constrained MDP
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2X



Car has tvs indegendentiy-driven parglle’ whee's and e free-rolling reer
vl For thig robet, turning and moving lfarware or backward reguire

b

I & ‘ L

Benchmarking Safe Exploration in Deep .' < c oo ¢ u '
Reinforcement Learning s @ |

c®9 ¢

Alex Ray* Joshua Achiam* Dario Amodei Soal Mowe te & sanes of goal position Button: | s of goal buttcy wsh: Mo a 5ox Lo o Sar as of goal position
OpenAl OpenAl OpenAl

OGO 2 O JQUIUTURST VILT DIOLETD symammery Locm gr 'wrguriegys ras

» I - - A or ,-O - —-’ -~
Point 15 a simnpia rabot constrairad ta ths 21 plana, with ana uatar tor T contrals T tha hip, far azimuth and alevation ralative to the toren. and

taming ana anather ror n‘-‘x.lng torward or hackwars Paint has & front
tacing small square wnich he pa with The Push tase

one inthe Knee. cantro! nig angle, & uniforrre rencom goloy seeps the

oot o 1alling cuss and ganaratas traval

*iMn- wrthan Frarza s ntcon hirlene Such Mn

Coal: Moo e ase Cly Han Sultlon: | o amnusal 204 Lulzon Puash: Mo a 2210 urwaalgoa po : o3l N R EaAnNE ol oainpn

Dlng 7hao ‘ CMU https://openai.com/blog/safety-gym/ 3



Return and cost trade off against each other meaningfully
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Safe Reinforcement Learning

e “Safe Reinforcement Learning can be defined as the process of learning
policies that maximize the expectation of the return in problems in which it is
Important to ensure reasonable system performance and/or respect safety
constraints during the learning and/or deployment processes.”

® \Where to add the constraints?
e Add constraints to the exploration procedure: TRPO, PPO

® Add constraints to the optimization criteria (performance/constraints):
CMDP

: Garcia, Javier, and Fernando Fernandez. "A comprehensive survey on safe reinforcement learning." Journal of Machine Learning Research
Ding Zhao | CMU {5, (2015): 1437-1480.



Constrained Markov Decision Process

« Augment the MDP with a set C of auxiliary cost functions, C, ..., C, (with each one a
function C; : § X A X § — R mapping transition tuples to costs, like the usual reward),

and limits d,, ..., d,,. Let J~(x) denote the expected discounted return of policy z with
respect to cost function

00 ; Policy Space ﬂ
Ci . Jcl(ﬂ') — TE]Z' lztzoy Ci (St’ at, SZ 1)] :

Allowable

* The set of feasible stationary policies for a CMDP is then Fotes T
—
e = {” e Il Vi,Je(n) < di}
e and the reinforcement learning problem in a CMDP is ———
%k o =5 - ks
* = argmax g J(7) o &3, %08 ® s

Ding Zhao | CMU



Safe RL methods

» Constrained Markov Decision Process

* Lagrangian TRPO and PPO
* Trust Region Policy Optimization (TRPO)
* Proximal Policy Optimization (PPO)

* Constrained Optimization-based Methods

| will focus on the key motivations
and intuitions. For details of
implementation, you can read these
blogs and corresponding papers.

,‘ https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Recap: Markov Decision Process

» Defined by: (&, <, r, p)
« & : set of possible states
« o/ : set of possible actions
e 7 :reward function

5141 NP(' s, s at)
atNﬂ'( ; ‘St)

rtNr(-\St,at)

* p . dynamics function

» Goal of MDP: given (&', &, r,p), po( - ), T or y, we want

7% = argmax_E [Zzo ytrt]

Ding Zhao | CMU 8



Baselines for Safe RL algorithms
* Trust Region Policy Optimization (TRPO)

* Proximal Policy Optimization (PPO)

| will focus on the key motivations
and intuitions. For details of
implementation, you can read these
blogs and corresponding papers.

,‘ https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Ding Zhao | CMU )



Trust Region Policy Optimization (TRPO)

o Safety issue with Vanilla Policy Gradient (VPG)

. J(0,2,)=E ZZO y'r,|me|, 0% =argmaxyJ(0,9,), 0., =0,+aVyJO)l|,_,, 0;,— O

* We control the learning rate in parameter space, but due to the nonlineararity
of neural networks, even a small change in parameter may lead to very
different policies (output of the NN)—so a single bad step can collapse the
training procedure. This makes it dangerous to use large step sizes with VPG,
thus hurting its sample efficiency and induce risks.

« TRPO and a simpler algorithm PPO were invented to resolve this issue by
defining the update constraint not on parameter space but directly on policy
space.

Ding Zhao | CMU 10



Trust Region Policy Optimization (TRPO)

* Let 7y denote a policy with parameters . We still have the similar goal with an additional constraint
0., = argmax, L (Hk, 9)
st. Dy (016;) <6

« where L (6’k, 9) Is called the surrogate advantage, we use the old parameters to evaluate each action,
and change the policy to increase the chance of “good” actions and decrease the chance of “bad” ones

L (ek’ 9) — _S,ClNﬂ'gk ’ e A”@k(s’ Cl)]

g, (a | 5)

. DKL (6’”6’k) IS an average KL-divergence between policies across states visited by the old policy. In
other words, when parameters change, the chance of performance an action should not change much

Ty

Dy (‘QHQk) — = k [DKL (779( - | S)Hﬂek( - | S)>]

Kullback—Leibler divergence Dk (P |l Q) = J p(x)log (@> dx

g(x) 11
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Proximal Policy Optimization (PPO)

 PPO is motivated by the same question as TRPO: how can we take the
biggest possible improvement step on a policy using the data we currently
have, without stepping so far that we accidentally cause performance
collapse?

 Where TRPO tries to solve this problem with a complex K-L divergence
(second order) method, PPO is a family of first-order methods that use a few
other tricks to keep new policies close to old.

 PPO methods are significantly simpler to implement, and empirically seem to
perform at least as well as TRPO.

* PPO has been widely used in practice for its fast speed and simple
Implementation

: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
Ding Zhao | CMU ps://spinningup.op pinningup 12



Famous tests using PPO
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PPO algorithm

» Still the same goal
0,.1 = argmax, [t s~y lL (S, a, 0, 6’)]

« But incorporate the constraint into the objective function with a simple clip g

ng(a | s)

g (a | §)

L (S, a, 0, 6’) = min ( A"(s,a), g. (A”@k(s, a)))

(1+e)A A >0 (good action)

h A) =
where g (A) {(1 —¢)A A <0 (bad action)

. For good actions, 7, increase with a ceiling at (1 + e)ﬂgk

. For good actions, r, decreases with a floor at (1 — e)ir@k

Ding Zhao | CMU
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Different ways to add constraints

. VPG « TRPO

l

. Dg; (‘9‘ ‘Hk) — = [DKL (779(' | $)||7,( - | S))]

S~Ty,
* Use a learning rate to constrain the change
of 0 in 7, * Use KL divergence to bound the change of

the policy distribution 7, from 7, . We may
still have a large spike of change sometimes.

. PPO

(1+e)A A >0
(1—-6)A A<O

mg(a | 5)

g (a | §)

L(s,a,6,,0) = min( A"(s,a), g (A™(s, d))>, g(A) = {

- Bound the averaged ratio of 7y and 7, tor each action

15
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Constrained Markov Decision Process

« Augment the MDP with a set C of auxiliary cost functions, C, ..., C, (with each one a
function C; : § X A X § — R mapping transition tuples to costs, like the usual reward),

and limits d,, ..., d,,. Let J~(x) denote the expected discounted return of policy z with
respect to cost function

00 ; Policy Space ﬂ
Ci . Jcl(ﬂ') — TE]Z' lztzoy Ci (St’ at, SZ 1)] :

Allowable

* The set of feasible stationary policies for a CMDP is then Fotes T
—
e = {” e Il Vi,Je(n) < di}
e and the reinforcement learning problem in a CMDP is ———
%k o =5 - ks
* = argmax g J(7) o &3, %08 ® s
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Primal-dual method 1.0

* Recall the constrained objective function in CMDP with one constraint:

T = arg mdx - J (71') maximizing the reward return

S.I. Jc(il') <d satisfying the constraint

* |t has an equivalent Lagrangian formulation:

n*, A* = argminy, max, L(m, 1)
L(z, 4) = J(x) = A(J (7)) — d)

 Dual problem: the outer minimization over the dual variable A € R,

Ding Zhao | CMU
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Primal-dual method 1.0

* The Lagrangian formulation:  7*,A* = argmin,, ymax, L(x, 1)
L(z, ) = J(m) = A(J(7) — d)
* Primal-dual (Lagrangian) algorithm:
1. Fix A, optimize #: 7, = argmax, L(x;, 1)
2. Fix m, optimize A: 4, =argmin,,, L(7,4)
 Phase 1) can be done via any policy gradient-based RL algorithms

 Phase 2) is usually done via one-step gradient descend
%\, = max (o,zi gV, L(x. . ,11.)) — max (o,zi F () — d))

Ding Zhao | CMU
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Primal-dual method 1.0

 Example: using PPO to optimize z;, | = argmax, J(n) — A(JA(7) — d)

 PPO-Lagrangian algorithm

Epcost /() ety
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Primal-dual method 1.0

 What'’s the problem?

- The dual problem is only approximately solved: 4 — 0 when J ()
satisfies the constraint, A — + oo we fail

mF, A =argmin,omax, J(x) — A(J(7) — d)

We need to select a proper learning rate for A

A1 = max (O’;ti + n(J (7 1) — d))

Ding Zhao | CMU
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Primal-dual method 2.0

 What'’s the problem?

 Improper learning rate can lead to oscillation training behavior and
phase shift between A and J ~(7)

Traditional Lagrangian
240 A

220 -

—

]C(yz') £ 200 -

180 -

Agent Steps 1le7
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Primal-dual method 2.0

 How to solve the unstable training problem?
» Denote ¢; = J(r;, ) — d, we could observe that

Aipr =Ai+ne =4 +nle,+e_) =4+ ’72;-=1 €;
« The dual problem updating is an integral controller for A!

 Then the oscillation, phase shift problems could be explained.

 \We can regard the dual variable updating as a control system and design a
PID controller to solve A.

Ding Zhao | CMU
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Primal-dual method 2.0

* PID-Lagrangian algorithm Algorithm 1

Constraint-Controlled Reinforcement Learning
1: procedure CONSTRAINED RL(my,(:|s), d)

Algorithm 2 PID-Controlled Lagrange Multiplier 2: Initialize control rule (as needed)
1: Choose tuning parameters: Kp, K;, Kp > 0 33 Je > cost measurement history
2: Integral: I < 0 4 repeat
3: Previous Cost: J¢ prey < 0 5 Sample environment: > a minibatch
4: repeat at each iteration k 6 a ~ 7(-[s; 9);3' ~ T(s,a), ,
5: Receive cost Jo 7 r~ R(s,a,s"),c~C(s,a,s)
6: A« Jo—d 8 Apply feedback control:
7. 8 (Jo — Joprev)+ 9: Store sample estimate Jo into J¢
8: I+ (I+A), 10: A h(Jc,d), A >0
9- A+ (KpA+ KT+ Kpd), 11: Update m by RL: > by Lagrangian objective
10: Je prew — Jo 2 Update critics, V(s), Vo (s) > if using
11:  return \ 3 VoLl = 5 (ng(ﬂ’g) — /\ngc(ﬂ'g))
4 until converged
5 return my
6: end procedure
. Stooke, Adam, Joshua Achiam, and Pieter Abbeel. "Responsive safety in reinforcement learning by pid | ' thods." Int tional 23
Dmg Zhao ‘ CMU Conference on Machine Learning. PMLR, 2020. : Y 19 B I RGTERG I METOEs.Enetens



Primal-dual method 2.0

* PID-Lagrangian algorithm has better training stabillity
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Stooke, Adam, Joshua Achiam, and Pieter Abbeel. "Responsive safety in reinforcement learning by pid lagrangian methods." International
Conference on Machine Learning. PMLR, 2020.
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Primal-dual method 3.0

 The problems for primal-dual methods:
* Lack of optimality guarantees both during training and after training
* [he policy only converges to a saddle point asymptotically

* The primal problem is usually difficult to optimize

{ reward J
4 \ Primal (
policy — | Ccost }
\- ~/ gradient Dual i estimate
([ dual
| variables

« How to overcome the theoretical drawbacks of primal-dual methods?

Ding Zhao | CMU



Variational inference approach

 Consider the safe RL problem from the probabilistic inference perspective

» Denote O as the optimality variable @ @ @ @
ol o

DEOECRD)

graphical model with optimality variables

e p(O. =1]s,a) = Knorm exp(r(st, at)) X exp(r(st, at))

* We have the following Evidence Lower Bound (ELBO) for likelihood:

logp (O =1) = log Jp(@ = 1| p0)de > E, [ ) v'r] — aKL(qllp,) = J(g. )
=0

260

Dmg Zhao ‘ CMU Levine, Sergey. "Reinforcement learning and control as probabilistic inference: Tutorial and review." arXiv preprint arXiv:1805.00909 (2018).



ELBO Derivation

* Denote the trajectory probability of a policy as:
pﬂe(T) — p(SO)Hp(St+1 | Sta Clt)il'g(dt ‘ St)p(e) Q(T) — p(S())Hp(St+1 ‘ St, Clt)Q(Clt ‘ Sr)

>0 >0
* ¢ Is the variational distribution. We have:

log px (0 = 1) = log / p(0 = 1| T)ps(r)dr
p(O =1 | T)pW(T)]

= logEq|

q(7)
> K, log O =11TP(T) = Jensen’s inequality
q(7)
: P (7)
=E, . logp(O=1|7)+E,.,lo
q gp( ‘ ) q g Q(’T)
x Erng[Y 7] — aDxr(a(7) o2 (7)) = T (@) =By |3 (370 — aDxr(aClse)llms(:1s:))) | state-wise ELBO
t=0 | t=0 i
trajectory-wise ELBO + logp(0), Vq(als:) EHE.

Dmg Zhao ‘ CMU Levine, Sergey. "Reinforcement learning and control as probabilistic inference: Tutorial and review." arXiv preprint arXiv:1805.00909 (2018).



Solving Variational inference (details in the paper)

 We could improve the ELBO by Expectation-Maximization (EM) algorithm

J(g.m) = E, [ ) v'r]— aKL(qllp,)
=0
» E-step: improve the variational distribution g

* g can be solved analytically with optimality guarantee
» M-step: improve the policy 7 by minimizing the divergence KL(g||p,)

* By restricting the updated policy within a trust-region, we could
achieve robustness guarantee and worst-case performance bound

. Liu, Z., Cen, Z., Isenbaeyv, V., Liu, W., Wu, Z.S., Li, B., & Zhao, D. (2022). Constrained Variational Policy Optimization for
Dmg Zhao ‘ CMU Safe Reinforcement Learning. ArXiv, abs/2201.11927.
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Advantages

 Comparison to primal-dual method  Robustness analysis

Feasible region

{ reward ] e .. 0
4 ) Primal suboptimal Feasible region q;"+1 'q;."
' o [ } optimal S
olicy [<— cost P C WY e
P y Doll.cy L <@— hard P ) Q. ’ %\% €2,/ |
- / gradient Dual ¢ estimate TR e /€ .
easy Tg. €2 Ij‘;-_-/“’:i;:‘,//"/ ) ’/ Direction of
( d.U8| 4;«:::—»—{}»'/ €2 e higher rewards
| variables € T, . .,
___________________________________________________ Direction of
"""" higher rewards
4 N\ M-step N E-step reward
, variational . J (a) Regular policy updating (b) Worst-case policy updating
policy policy i )
\_ ) supervised ) convex cost Figure 7. Illustration of the policy updating at the 2-th iteration under the M-step approximation error.
learning optimization ™ /

* Additional benefits include: sample-efficiency (off-policy), stable training
performance, optimality guarantee for each policy update, etc...

. Liu, Z., Cen, Z., Isenbaeyv, V., Liu, W., Wu, Z.S., Li, B., & Zhao, D. (2022). Constrained Variational Policy Optimization for 29
Dlng Zhao ‘ CMU Safe Reinforcement Learning. ArXiv, abs/2201.11927.



Worthy Reading

* Ray, Alex, Joshua Achiam, and Dario Amodel. "Benchmarking safe
exploration in deep reinforcement learning." arXiv preprint arXiv:1910.01708 7
(2019).

* https://spinningup.openai.com/en/latest/spinningup/rl_intro2.ntml

« Garcia, Javier, and Fernando Fernandez. "A comprehensive survey on safe
reinforcement learning."” Journal of Machine Learning Research 16.1 (2015):
1437-1480.
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